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Spring constant analogy for estimating stiffness of a single
polyethylene molecule
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The stiffness of a simple planar polymeric chain is modeled using analogies of mechani-
cal springs arranged in series and in parallel assemblies. The stiffness of chemical bonds is
resolved into two perpendicular axes defined by the longitudinal and transverse axes in the
molecular plane. Using Hooke’s definition of spring stiffness, the molecular stiffness of poly-
ethylene is obtained along the longitudinal and transverse directions. This paper demonstrates
the use of physical analogies and mathematical approximations for obtaining an analytical
form for the stiffness of a simple single-molecule.
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1. Introduction

Recent advances in optical technology enable the elastic stiffness of single mole-
cules such as DNA [1–4], RNA [5] and extracellular matrix proteins [6,7] to be obtained
by optical trapping and stretching. However, the possibility of mounting molecules onto
beads for stretching purposes is limited for larger molecules. The objective of this paper
is to demonstrate how physical models from elementary cases, such as spring constants,
can be applied for estimating physical properties in smaller molecules. Polyethylene
(PE), being the simplest of polymeric chains, is selected for illustration. As the name
suggests, PE is a polymer of ethylene monomers, as shown in figure 1. To obtain approx-
imate molecular chain stiffness, an analogy is made herein with the mechanical spring
whereby the spring constant, or stiffness, is defined according to Hooke’s Law as

k = F

δl
, (1)

where F and δl are the applied force and elongation, respectively. For springs in series,
the force across each spring is common while the overall elongation is the summation of
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Figure 1. An ethylene monomer and its polymeric form, polyethylene (PE).

individual spring elongation. Hence

1

k
=
∑
i

1

ki
. (2)

For springs in parallel, the overall load is summed from the force across each indi-
vidual spring, while the elongation is common for all springs. This leads to

k =
∑
i

ki . (3)

Figure 2 shows the two possible combinations of springs. In addition to the spring
analogy, one may also apply the electrical circuit and thermal flow analogies shown in
table 1.

2. Analysis

A fully stretched PE chain has its carbon atoms in a zig-zag conformation on a
plane. Therefore stretching of the PE chain results in elongation of the C–C bond, r, and
widening of the C–C–C angle, θ . For the specific case of a fully stretched PE, no bond
twisting occurs on the assumption that this molecule takes the planar zig-zag conforma-
tion. As in many other analyses, we begin our analysis by isolating a representative unit.
This is shown in figure 3 where two halves of carbon atoms and their corresponding
chemical bond are isolated for analysis. The hydrogen atoms are not shown for clarity.
Suppose the bond stiffness is ks and angular stiffness is kθ , then the effective stiffness
will have to be resolved along the direction of interest, as depicted in figure 4, to give the
equivalent stiffness constants along the chain longitude (kLR, k

L
θ ) and along the in-plane

transverse (kTR, k
T
θ ). Since bond stiffness ks and angular stiffness kθ has been applied

by several groups of researchers [8–11] for computational simulation, these stiffness
constants are being employed herein for analytical formulation.

In paving way for resolving forces and displacement, the longitudinal L and trans-
verse T axes are introduced for a PE chain as shown in figure 3, where theL–T plane lies
in the zig-zag plane formed by the carbon atoms. The bond axis R lies on theL–T plane,
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(a)

(b)

Figure 2. Assembly of two springs in (a) series, and (b) parallel.

Table 1
Analogies for obtaining stiffness of polypropylene chain.

Mechanical spring Electrical circuit Thermal flow

Force Current Heat flow
Elongation Potential difference Temperature difference
Spring constant Conductance (resistance−1) Thermal conductancea

a Thermal conductance, K = kA/L, where k = thermal conductivity.
A = cross-sectional area.
L = thermal transfer distance in each composite slab.

which is subtended by an angle θ0/2 where θ0 is the equilibrium bond angle between
neighboring carbon atoms. Perpendicular to the R-axis is the θ-axis, which defines the
direction of bond bending. In addition, the equilibrium bond length, r0, is introduced for
the distance between two neighboring carbon atoms. For brevity, the changes in bond
length r − r0 and bond angle θ − θ0 are written as δr and δθ , respectively.
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Figure 3. Representative unit for a polyethylene chain.

2.1. Longitudinal stiffness

Applying a load FL along the molecular chain longitude, the force along the R-axis
is resolved as

FR = FL sin

(
1

2
θ0

)
, (4)

assuming no change in bond angle. By Hooke’s Law,

FR = ksδr. (5)

Substituting equation (5) into equation (4), we have

FL = ksδr

sin(θ0/2)
. (6)

Corresponding to the change in bond length δr, the change in dimension along theL-axis
is

δlLR = δr sin

(
1

2
θ0

)
. (7)

Therefore the longitudinal stiffness according to Hooke’s Law, considering bond elon-
gation, is obtained from equations (6) and (7) as

kLR =
FL

δlLR
= ks

sin2(θ0/2)
. (8)
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Figure 4. Obtaining individual effective stretching and bending stiffness for (a) longitudinal, and (b) trans-
verse chain directions.

Resolving along the θ-axis, the force responsible for altering the bond angle is

Fθ = FL cos

(
1

2
θ0

)
(9)
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assuming no change in bond length. Taking Hooke’s Law for angular stiffness, we have

Fθr0 = kθ
(

1

2
δθ

)
. (10)

Substituting equation (10) into equation (9) gives

FL = kθ(δθ/2)

r0 cos(θ0/2)
. (11)

The change in dimension along the L-axis, corresponding to the change in bond
angle δθ , is

δlLθ = r0
{

sin

(
1

2
θ0

)[
cos

(
1

2
δθ

)
− 1

]
+ cos

(
1

2
θ0

)
sin

(
1

2
δθ

)}
. (12)

For infinitesimal change in bond angle, δθ → 0, the following assumptions are valid:
sin(δθ/2) = δθ/2 and cos(δθ/2) = 1. So, equation (12) simplifies to

δlLθ = r0
[

1

2
δθ cos

(
1

2
θ0

)]
. (13)

Therefore the longitudinal stiffness, considering change in bond angle, is obtained from
equations (11) and (13) by Hooke’s Law:

kLθ =
FL

δlLθ
= kθ

r2
0 cos2(θ0/2)

. (14)

As the bond stiffness and angular stiffness are arranged in series, the effective stiffness
per representative unitalong the longitudinal direction is based on equation (2),

1

kLeff

= 1

kLR
+ 1

kLθ
. (15)

For the entire molecular chain consisting n number of carbon atoms, equation (2)
applies again with a factor of n− 1 and n − 2 to the first and second terms on the RHS
of equation (15) because there exist n − 1 number of C–C bonds and n − 2 number of
C–C–C angles. Therefore,

kLeff =
kskθ

(n− 2)ksr2
0 cos2(θ0/2)+ (n− 1)kθ sin2(θ0/2)

. (16)

2.2. Transverse stiffness

Where the arrangement of “springs” is not clear as to whether series arrangement or
parallel arrangement is to be employed, one considers the independence of the springs in
attaining the prescribed deformation. When the prescribed deformation can be attained
by any one of the individual spring, then the springs are said to be in series. If, on the
other hand, deformation of one spring must be accompanied by similar (common) defor-
mation by other springs, they are said to be in parallel. For the case of PE chain being
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Figure 5. Transverse stretching of (a) PE molecular chain, and (b) its equivalent system.

longitudinally stretched, such elongation can be attained by bond stretching alone (bond
angles being rigid) or by bond bending only (bond lengths fixed), hence the bond length
and bond angle stiffness are in series. Similar argument holds for transverse stretching
in the molecular plane of PE, as furnished in figure 5(a). Dimensional change of the
width, δlT , can take place due to bond elongation only (bond angle remains unchanged)
or due to narrowing of the bond angles alone (constant bond lengths). Hence the pair
of bond length “spring” and bond angle “spring” are considered as series spring within
each representative unit. However, each representative unit is in parallel with other rep-
resentative units. Hence the arrangement of springs for transverse in-plane stretching is
as shown in figure 5(b).

Suppose a transverse load is applied such that the force passing through each rep-
resentative unit is FT , then

FR = FT cos

(
1

2
θ0

)
(17)

assuming fixed bond angle. Substituting equation (5) into equation (17) gives

FT = ksδr

cos(θ0/2)
. (18)
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For a bond elongation of δr along the R-axis, the corresponding “elongation” along the
T -axis is

δlTR = δr cos

(
1

2
θ0

)
. (19)

The transverse stiffness, according to Hooke’s definition, can be obtained from equations
(18) and (19) as

kTR =
FT

δlTR
= ks

cos2(θ0/2)
. (20)

Resolving along the θ-axis, the force accountable for changing the bond angle is

Fθ = FT sin

(
1

2
θ0

)
(21)

assuming no change in bond length. Substituting equation (10) into equation (21) yields

FT = kθ(δθ/2)

r0 sin(θ0/2)
. (22)

The change in dimension along the T -axis due to a change in bond angle by δθ is

δlTθ = r0
{

cos

(
1

2
θ0

)[
cos

(
1

2
δθ

)
− 1

]
+ sin

(
1

2
θ0

)
sin

(
1

2
δθ

)}
. (23)

For infinitesimal change in bond angle, equation (23) reduces to

δlTθ = r0
[

1

2
δθ sin

(
1

2
θ0

)]
. (24)

Therefore the transverse stiffness per representative unit, considering change in bond
angle only, can be obtained from equations (22) and (24) by Hooke’s definition,

kTθ =
FT

δlTθ
= kθ

r2
0 sin2(θ0/2)

. (25)

Since both the bond length “spring” and the bond angle “spring” are in series, equation
(2) applies for the transverse stiffness per representative unit

1

kTeff

= 1

kTR
+ 1

kTθ
. (26)

For the entire molecular chain consisting n number of carbon atoms, equation (3)
applies with due consideration to the representative units being in parallel to the trans-
verse stretching.

Therefore,

kTeff =
(n− 1)kskθ

ksr
2
0 sin2(θ0/2)+ kθ cos2(θ0/2)

, (27)
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where the factor of n − 1 refers to the number of representative units for n number of
carbon atoms along the molecular chain.

3. Results

As an illustration to the longitudinal stiffness and transverse stiffness described by
equations (16) and (27), respectively, we employ the physical data from [12] as listed in
table 2. Since the Morse potential for bond stretching

UM = D
{
1− exp

[−a(r − r0)]}2
(28)

is known to be more realistic than the harmonic potential

UH = 1

2
ks(r − r0)2, (29)

the stretching stiffness ks coefficient is obtained from the Morse parameters (D, a) as
[13,14]

ks = 2Da2. (30)

Result of the longitudinal and transverse stiffness as a function of molecular chain
length, in terms of the number of carbon atoms n, is shown in figure 6. As expected,
results reveal that transverse chain stiffness is higher than the longitudinal chain stiffness,
and the gap widens for longer molecular chains.

Though the non-bonded potential should be included for more accurate description
of the intramolecular interaction, it is negligible in comparison to the covalent bond
stiffness. Another type of stiffness not included here is the twisting of bonds. This is
because no torsion of chemical bond occurs for stretching a planar molecule as in the
case of PE [15]. Twisting of bonds is expected, however, either in prescribed twisting
of a planar molecule [16] or in stretching of a helical polymeric chain such as isotactic
polypropylene.

Table 2
Physical data for illustration.

Data from [12] Equivalent SI units applied herein

D 80.0 kcal mol−1 334.72 kJ mol−1

a 1.94 Å−1 19.4 nm−1

ks Nil 251950 kJ mol−1 nm−2

kθ 144.6 kcal rad−2 mol−1 605.0 kJ rad−2 mol−1

r0 1.53 Å 0.153 nm
θ0 111.0 deg 1.9373 rad
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Figure 6. Stiffness of in-plane PE molecule for n number of carbon atoms in longitudinal direction (contin-
uous curve) and transverse direction (dashed line).

4. Conclusions

An analytical approach in formulating the stiffness of a planar molecular chain has
been demonstrated by means of the mechanical springs assembly. Major criteria adopted
in this paper include:

(a) Resolution of forces and of displacements;

(b) Quantitative description for stiffness of springs arrangement in series and par-
allel; and

(c) Assumption of sin(δθ) ≈ δθ and cos(δθ) ≈ 1 for simplicity in infinitesimal
deformation.

Results reveal that with increasing length of PE molecule, the structural longitudi-
nal stiffness decreases while the structural transverse stiffness increases.
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